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Space and time are both crucial characteristic dimensions of geographic events and phenomena. Although exploratory spa-
tial data analysis (ESDA) can be used to visualize and summarize complex spatial patterns, it has limitations in capturing
the temporal dynamics of geographic features. Efforts have been made to incorporate the time dimension into ESDA tech-
niques to detect space–time clustering or trends. Localized space–time statistics that could help in exploratory space–time
data analysis (ESTDA), however, are still lacking. Focusing on spatial panel data, our work extended Getis–Ord Gi and
G�

i statistics using a space–time contemporaneous weight matrix and a space–time lagged weight matrix to account for
local space–time autocorrelation. Two applications in this article show that the newly developed method can be used to
summarize space–time patterns from spatial panel data, identify changes of landscape more consistently, and lend the
results readily to visualization. Key Words: exploratory space–time data analysis (ESTDA), local space–time autocor-
relation, space–time Gi and Gi

*, space–time contemporaneous weight matrix, space–time lagged weight matrix.

空间和时间均为地理事件和现象的关键特征维度。尽管可以使用空间数据探索分析（ESDA）对复杂的空间
式进行可视化和概述，但它在捕获地理特征的时空动态方面存在局限性。为检测时空聚类或趋势，科学
家设法在 ESDA 技术中纳入了时间维度，但仍然缺乏可用于时空数据探索分析（ESTDA）的局部时空统计数
据。我们的研究侧重于空间面板数据，使用时空同期权重矩阵和时空滞后权重矩阵来扩展 Getis–Ord Gi

and G�
i 统计，以解释局部时空自相关性。本文中的两个应用说明，新开发的方法可用于总结空间面板数据

中的时空模式，以便更一致地识别地貌变化，更轻松地提供可视化的结果。 关键词 : 时空数据探索分析
(ESTDA)，局部时空自相关，时空Gi and Gi

�，时空同期权重矩阵，时空滞后权重矩阵。

El espacio y el tiempo son dimensiones caracter�ısticas cruciales de los eventos y fen~amenos geogr�aficos. Aunque el an�alisis
de datos espaciales con car�acter exploratorio (ESDA) se puede usar para visualizar y resumir patrones espaciales complejos,
tiene limitaciones para captar la din�amica temporal de rasgos geogr�aficos. Se han hecho esfuerzos para incorporar la
dimensi~an temporal dentro de las t�ecnicas ESDA para detectar agrupamiento o tendencias del espacio–tiempo. Sin
embargo, todav�ıa faltan las estad�ısticas localizadas del espacio–tiempo que pudieren ayudar en el an�alisis exploratorio de
datos del espacio–tiempo (ESTDA). Enfoc�andonos en el panel de datos espaciales, nuestro trabajo extendi~a las estad�ısticas
Getis–Ord Gi y G�

i usando una matriz de peso contempor�anea del espacio–tiempo y una matriz de peso rezagada del espa-
cio–tiempo para dar cuenta de la autocorrelaci~an del espacio–tiempo local. Dos aplicaciones consideradas en este art�ıculo
muestran que el m�etodo desarrollado recientemente puede usarse para resumir patrones del espacio–tiempo desde el panel
de datos espaciales, identificar de manera m�as consistente los cambios del paisaje y prestar los resultados de inmediato para
visualizaci~an. Palabras clave: an�alisis exploratorio de datos del espacio–tiempo (ESTDA), autocorrelaci~an del espa-
cio–tiempo local, espacio–tiempo Gi y Gi

*, matriz de peso contempor�anea del espacio–tiempo, matriz de peso
rezagada del espacio–tiempo.

With the development of the Global
Positioning System, remote sensing, and geo-

graphic information systems (GIS), the past several
decades have witnessed a remarkable increase in the
production of geographically referenced data and
the development of a large variety of spatial analyti-
cal techniques (Anselin 1995, 2012; Goodchild et al.
2000; Goodchild and Haining 2004). In this context,
exploratory spatial data analysis (ESDA) has become
prevalent due to its strength in revealing complex
spatial phenomena. As defined by Anselin (1999),
ESDA is a set of techniques to “describe and visual-
ize spatial distributions, identify atypical locations
(spatial outliers), describe patterns of spatial associa-
tion (spatial clusters), and suggest different spatial
regimes and other forms of spatial instability or spa-
tial non-stationarity” (258). Fundamental to ESDA
is the concept of spatial autocorrelation that follows
Tobler’s first law of geography: Everything is

related to everything else, but near things are more
related than distant things (Tobler 1970; Anselin
1999). A fair amount of global and local indexes of
spatial autocorrelation, such as Moran’s I, local indi-
cators of spatial association (LISA), and Getis–Ord
statistics, have been developed and applied in
describing spatial patterns, detecting spatial clusters,
and suggesting spatial regimes.

Geographic events and phenomena “have both
spatial and temporal dimensions that cannot be
meaningfully separated” (Miller 2004, 648). Although
ESDA can be used to analyze and visualize complex
spatial patterns, it has limitations in capturing the
temporal dynamics of geographic features (Ye 2010).
In this research, we focus on spatial panel data (also
known as spatial panels), which are composed of
repeated observations over time on the same set of
cross-sectional (geographic) units (e.g., countries,
states, counties, census tracts, and ZIP codes).
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Compared to cross-sectional data, spatial panel data
contain more variation and are generally more infor-
mative because of the added time dimension (Elhorst
2003). Many socioeconomic indicators (e.g., annual
gross domestic product by state in the United States)
that are important for geography, regional science,
public health, and other disciplines are actually spatial
panels. Although spatial panel data contain richer
space–time information than cross-sectional data,
ESDA does not use the temporal dimension, and it
only focuses on a single cross section. In this regard,
it calls for the advancement of exploratory space–time
data analysis (ESTDA) to go beyond the static data
and better reveal the space–time dynamics of various
geographic events and phenomena.

Efforts have been made to incorporate the tem-
poral dimension into ESDA. Here, we identify two
important threads of research effort. The first line
of research deals with the temporal dynamics of
ESDA results (Rey 2001; Rey, Janikas, and Smirnov
2005). For example, Rey (2001) developed a spatial
Markov transition matrix by integrating the classifi-
cation of local Moran statistics into Markov chain
modeling. In this way, Rey (2001) compared the
regional income distributions (gained from local
Moran’s I) at different time points. Additionally,
Rey, Janikas, and Smirnov (2005) formulated a LISA
time–path plot to demonstrate how a region’s
income evolved over time with its neighbors. For
each region in a time series, its LISA time–path plot
was obtained by the following steps: (1) calculating
its spatial lag (the average of the region’s first-order
neighbors) at each time point; (2) plotting the region
and its spatial lag as an individual point in an x–y
axis; and (3) connecting all of the points over time
to obtain the LISA time path for this region. The
pairwise movement revealed by the LISA time path
can help in the identification of stability levels of
local economic growth.

Different from the first thread, the second line of
research consists of multiple space–time clustering
methods developed by modifying the spatial algo-
rithms to incorporate the time dimension. Some
examples include space–time scan statistics
(Kulldorff 2001; Kulldorff et al. 2005), space–time
kernel density estimation (Nakaya and Yana 2010;
Lee, Gong, and Li 2017), the space–time Ripley’s
K function (Bailey and Gatrell 1995), and the
space–time nearest neighbor test by Jacquez and col-
laborators (Jacquez 1996; Jacquez, Goovaerts, and
Rogerson 2005). Although autocorrelation-based
spatial statistics are well-established and widely used,
the measurement of space–time autocorrelation has
not received sufficient attention in the statistical
analysis of space–time clustering or trends. The con-
cept of space–time autocorrelation can be dated
back to 1975 with the pioneering work of Cliff and
Ord (1975). Since then, the measurement of global
spatiotemporal autocorrelation has been sporadically

documented in the literature (Cliff and Ord 1981;
Griffith 1981; Bertazzon 2003; Dub�e and Legros
2013). In particular, local space–time autocorrelation
statistics have not been formulated until recently,
with most of the work focusing on extending
Moran’s I (Shen, Li, and Si 2016; Lee and Li 2017).
Some important alternatives, such as Getis–Ord sta-
tistics, have rarely been explored (Griffith 2018).
Introduced in Getis and Ord (1992) and Ord and
Getis (1995), Gi and G�

i can identify local patterns
in spatial data and distinguish between hot spots
(locations of high spatial associations) and cold spots
(locations of low spatial associations). As stated by
Songchitruksa and Zeng (2010), “While the Moran’s
I either confirms the site of interest as part of its
surrounding sites (in cluster) or distinguishes the
site from the cluster, it cannot discriminate between
patterns that are high-value dominant or low-value
dominant” (43). Therefore, extending Gi and G�

i
into the space–time domain, which is the objective
of this article, would seem to be promising.

The Emerging Hot Spot Analysis tool in ArcGIS
(ESRI 2019) provides a way to extend Getis–Ord
statistics to the space–time domain. Users are not
well informed of how their space–time adjacency
structure is conceptualized, where their specification
of space–time weight matrix is derived from, and
what intellectual relationship it has with existing
efforts, however. Two conceptualizations of space–
time dependency structure, contemporaneous and
lagged (see “Space–Time Weight Matrix” for more
details), have been documented in the literature, and
their mathematical expressions have been adopted in
the measurement of global space–time autocorrela-
tion (Cliff and Ord 1981; Griffith 1981; Griffith and
Paelinck 2018). As recently noted by Griffith (2018),
though, these two conceptualizations or specifications
have rarely been used in local space–time autocorrela-
tion statistics, because they were developed long
before the appearance of local Moran’s I, Getis–Ord
Gi and G�

i , and other localized spatial statistics. Our
study fills this gap by incorporating the two space–
time specifications into Getis–Ord Gi and G�

i to
account for local space–time autocorrelation.

Getis–Ord Gi and G
�
i

The null hypothesis of Gi is that the sum of observa-
tions at i’s (i ¼ 1, 2, … , n) neighbors is not larger
(or smaller) than one would expect by chance given
all of the observations across the entire region (Getis
and Ord 1996). Neighborness here is often defined in
two ways. One is based on whether two locations
(areal units) share a common boundary, whereas the
other depends on whether they are within a specified
distance from each other. Using either of these two
methods, we can get a spatial weight matrix Ws

where each entry wij equals 1 if locations i and j are
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geographic neighbors and 0 otherwise. Notably, a
location i is not defined as its own neighbor (wii ¼ 0)
in Gi: The Gi statistic is given as follows:

Gi Wsð Þ ¼

P

j, j 6¼i wijxj
P

j, j 6¼i xj
:

Different from the null hypothesis of Gi, the G�
i sta-

tistic does not exclude the observation at i but sums it
together with its neighbors. Therefore, a location i is
also defined as its own neighbor in G�

i (wii ¼ 1). The
G�

i statistic is given by the following equation:

G�
i Wsð Þ ¼

P

j wijxj
P

j xj
:

The interpretation of GiðWsÞ and G�
i ðWsÞ is

straightforward: A positive standardized z value

suggests a hot spot (i.e., concentration of high-value
locations), whereas a negative z value indicates a
cold spot (i.e., concentration of low-value locations).
Note that G�

i ðWsÞ has been more widely used
than GiðWsÞ in practice (Braithwaite and Li 2007).

Space–Time Weight Matrix

Central to the space–time extensions of Gi and G�
i is

the conceptualization and specification of space–
time adjacency structure. Griffith (2010, 2012) sug-
gested two conceptualizations of space–time depen-
dency structure that include contemporaneous
specification (Figure 1A) and lagged specification
(Figure 1B). According to Griffith (2012),

Figure 1 Two conceptualizations of space–time dependency structure (modified from Griffith 2012): (A) space–time

contemporaneous dependency and (B) space–time lagged dependency.
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space–time contemporaneous specification indicates
that “a location i links to its preceding in situ loca-
tion as well as the instantaneous neighboring
locations,” whereas the space–time lagged specifica-
tion is that “a location i links to its preceding in situ
location as well as the preceding neighboring
locations” (23). Matrix versions of these two concep-
tualizations have been developed (Griffith 2010,
2012; Griffith and Heuvelink 2012; Griffith and
Paelinck 2018) and are given here.

The space–time contemporaneous specification
is

VST ¼ IT �WS þWT � Is:

The space–time lagged specification is

VST ¼ WT �WS þWT � Is,

where VST denotes the space–time connectivity
matrix, � is the Kronecker product, IT is a T by T
identity matrix (T is the number of cross-sections in
the spatial panel data), WS is the same n by n spatial
weight matrix as in the static Gi and G�

i , WT repre-
sents the T by T time series connectivity matrix (the
upper and lower off-diagonal cells contain 1, and all
other cells contain 0), and Is is the n by n identity
matrix. The total number of observations
is N ¼ nT: Note that the element vij in VST equals
1 if i and j are neighbors in space, time, or
both and 0 otherwise. Using spatial panel data with
100 cross-sectional units and eight time points (800
observations), for example, the dimensions of these
matrices including VST , IT , WS, WT , and Is will
then be 800 by 800, 8 by 8, 100 by 100, 8 by 8, and
100 by 100, respectively.

An obvious advantage of these two specifications
over those in other studies lies in their conciseness
and simplicity. They are delivered through matrix
operations that demonstrate clearly the extension of
a spatial weight matrix (can be acquired with many
GIS software programs) to its space–time version,
and these matrix operations can be easily performed
with many programming tools such as R, Matlab,
and Python.

These two specifications have been adopted to
calculate the global space–time Moran index
(Griffith and Paelinck 2018) and conduct eigenvec-
tor space–time filtering (Griffith 2010, 2012).
Griffith and Paelinck (2018) suggested that
when T ¼ 1, space–time contemporaneous specifi-
cation will reduce to a static (spatial) weight matrix,
and the lagged specification will vanish. After assess-
ing the spatial statistical properties of these specifi-
cations for the global Moran index, they further
stated that the contemporaneous specification is pre-
ferred over the lagged one (Griffith and Paelinck
2018). In light of this, we adopted the space–time
contemporaneous structure to derive space–time Gi

and G�
i in this research.

Space–Time Gi and G
�
i

Modified from its spatial counterpart, the null
hypothesis of space–time Gi can be specified as fol-
lows: The sum of observations at i’s (i ¼ 1, 2, … ,
N) space–time neighbors (excluding i) is not more
extreme (either larger or smaller) than one would
expect by chance given all of the observations
(excluding i). Replacing the spatial weight wij with
space– time weight vij, space–time Gi can be modi-
fied as

Gi VSTð Þ ¼

P

j, j 6¼i vijxj
P

j, j 6¼i xj
:

Likewise, the null hypothesis of space–time G�
i can

be stated as follows: The sum of observations at i’s
(i ¼ 1, 2, … , N) space–time neighbors (including i)
is not more extreme (either larger or smaller) than
one would expect by chance given all of the observa-
tions (including i). Substituting the spatial weight wij

with space–time weight vij, space– time G�
i is given

as follows:

G�
i VSTð Þ ¼

P

j vijxj
P

j xj
:

Similar interpretation can be used to interpret
GiðVSTÞ and G�

i ðVSTÞ: A positive standardized z
value suggests a space–time hot spot, whereas a
negative z value indicates a space–time
cold spot.

Inference

Both normal approximation and conditional permu-
tation have been used in the inference of Getis–Ord
Gi and G�

i : With normal approximation, Ord and
Getis (1995) derived the expectations and variances
of GiðWsÞ and G�

i Wsð Þ and redefined each statistic as
a standardized z value by subtracting the statistic
from its expectation, divided by the standard devia-
tion. Similarly, we can derive a standardized version
of GiðVSTÞ and G�

i VSTð Þ using the normal approxi-
mation. For the derivation of standardized GiðVSTÞ,
we begin with the calculation of the mean and vari-
ance of x:

x ið Þ ¼
1

N � 1

X

j, j 6¼i

xj

sN ðiÞ
2 ¼

P

j, j 6¼i x
2
j

N � 1
� ½x ið Þ�2:

The expected value of GiðVSTÞ is
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E Gi VSTð Þð Þ ¼
Vi

N � 1

with a variance of

Var Gi VSTð Þð Þ ¼
Vi N�1�Við Þ

N�1ð Þ2 N�2ð Þ

sN ðiÞ

xðiÞ

� �2

,

resulting in the following standardized form:

Gi VSTð Þ ¼

P

j vijxj�VixðiÞ

sN ðiÞ ½ N�1ð ÞSN1i�V 2
i �=ðN�2Þ

� �1=2
,

where Vi ¼
P

j 6¼i vij

SN1i ¼
X

j, j 6¼i

v2ij:

For the standardized G�
i ðVSTÞ, we also begin with

the calculation of the mean and variance of x

x� ¼

P

j xj

N

s�2N ¼

P

j x
2
j

N
� ðx�Þ2:

The expected value of G�
i ðVSTÞ is

E G�
i ðVSTÞ

� �

¼
V �
i

N

with a variance of

Var Gi VSTð Þð Þ ¼
V �
i N�V �

i

� �

N2 N�1ð Þ

s�N
x�

� �2

,

resulting in the following standardized form:

G�
i VSTð Þ ¼

P

j vijxj�V �
i x

�

s�N ½NS�N1i�V �2
i �=ðN�1Þ

� �1=2

V �
i ¼

X

j 6¼i

vij þ vii ¼ Vi þ vii

S�N1i ¼
X

j

v2ij:

Because the normal approximation method is less
reliable when the number of observations is small
(n< 100; Anselin 2019), we used conditional permu-
tation as the inference approach for space–time Gi

and G�
i : This consists of fixing the value at i, ran-

domly permuting all remaining values except the
one at i for m times, and recalculating the local sta-
tistic at i: In this way, we have mþ 1 local statistics
(including the observed one) for i and form an
empirical reference distribution under the null
hypothesis. A standardized z value for each local sta-
tistic can then be obtained, and inference can also
be made with a pseudo p value of a one-sided test
represented by the proportion of local statistics in
the reference distribution that are more extreme
(either larger or smaller) than the observed one
(Anselin 2019).

Just like what local spatial statistics suffer from,
the interpretation of pseudo p values in space–time
Gi and G�

i can be affected by multiple comparisons
(also known as multiplicity; de Castro and Singer
2006; Anselin 2019). Our space–time local analysis
involves multiple inferences and tests from a given
spatial panel data set (i.e., each i is given a test) and
therefore the resulting pseudo p values might not
correctly reflect Type I error (rejection of the true
null hypothesis). For example, if N ¼ 1, 000 null
hypotheses are simultaneously tested and all of them
are true, given that each test’s significance level is
set to a ¼ 0:01, then ten rejections of true hypothe-
ses would be expected.

There have been several corrections for multiple
comparisons. A simple but very conservative
approach is the Bonferroni method (Bonferroni
1936). With an overall target p value of a (i.e., over-
all probability of Type I error) for N simultaneous
tests, the Bonferroni bound for each individual test
would be a=N : Then, a test is taken as significant
when its p value or pseudo p value is no more
than a=N : Also controlling the overall probability of
Type I error, the corresponding bound for each
individual test in Sidak correction is 1� ð1�aÞ

1=N

(Sidak 1967). Both Bonferroni and Sidak methods
are conservative multiple comparison procedures
that can reduce the possibility of rejecting the true
null hypothesis but will also increase the possibility
of accepting a false null hypothesis.

In light of this, de Castro and Singer (2006) sug-
gested using an alternative and preferable approach
(i.e., false discovery rate [FDR]) proposed by
Benjamini and Hochberg (1995). FDR is obtained
with a stepwise procedure. First, the pseudo p values
(pi) of the test statistics are sorted in ascending order
(p1 � p2 � p3 � � � � pN ). Second, starting from pN ,
the first pi that meets pi � ði=NÞa is identified.
Third, this pi is set as the critical p value and all
tests are considered significant if their pseudo p val-
ues are no more than this value. FDR is less conser-
vative than the Bonferroni and Sidak methods and
thus can identify more locations with significant
local space–time autocorrelation while controlling
for false positives. Hence, we used FDR in this
work. We note that different approaches to calculate
FDR could affect the number of clusters being
detected (Bivand, M€uller, and Reder 2009), and
future research could be conducted to compare the
various methods.

We applied the newly modified space–time G�
i to

analyze two spatial panel data sets, including the
U.S. state-level unemployment rates between 2003
and 2017 and county-level Hurricane Sandy tweets
(posted between 23 October 2012 and 1 November
2012) in the eastern United States. Of note is that,
in both cases, we used queen contiguity to obtain
WS for calculation of VST :
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Application I

The first application examined how Twitter
responses to Hurricane Sandy at a community level
(here, county) changed across space and over time.
Hurricane Sandy was named a tropical storm on 22
October 2012, made its landfall in New Jersey on
29 October 2012, and dissipated on 2 November
2012. Sandy’s track between 21 October and 31
October was obtained from the National Oceanic
and Atmospheric Administration (n.d.) and mapped
in Figure 2. We collected 83,006 geotagged Sandy
tweets and aggregated them spatially to each
county in fourteen eastern states and temporally to
each day from 23 October 2012 to 1 November
2012. Thus, we obtained spatial panel data includ-
ing 626 cross-sectional units (counties) and ten
time points, where each observation represents the
number of Hurricane Sandy tweets posted from a
given county on a certain day. Note that each
observation in this spatial panel was divided by the
local population to reduce its impact because larger
population tends to yield more social media activ-
ity. For more details regarding Sandy tweet collec-
tion, please refer to Wang et al. (2019). Setting the
overall target p value to 0.01 and using 9,999 per-
mutations, the critical p value obtained via FDR
is 0.00203.

Figure 3 shows a clear space–time trend and clus-
tering of Hurricane Sandy tweets. We can easily
relate the space–time dynamics of Sandy Twitter
activities to the hurricane movements. As Sandy
headed northward and approached New Jersey,
more and more tweets were posted, which resulted
in the decrease in cold spots. Hot spots emerged on
28 October, expanded when Sandy made its landfall,
and shrank a day later with the decreasing intensity
of the storm. Compared with the hot and cold spot
patterns computed from individual cross sections
(not included in this article), the hot and cold spot
patterns derived from the new space–time index are
more distinct and the changes through time are
clearly revealed and visualized. Using the space–time
indexes, we are able to track the hot and cold spots
emerging and disappearing in a more consistent and
reliable manner.

Application II

The second application explored the space–time
dynamics of unemployment across the conterminous
United States (including Washington, DC) during
the time period from 2003 to 2017. The annual
state-level unemployment rates were obtained from
the Bureau of Labor Statistics (n.d.). Setting the

Figure 2 Study area and Hurricane Sandy track.
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overall target p value to 0.01 and using 9,999 permu-
tations, the critical p value obtained via FDR in
these data is 0.0017. Figure 4 shows the temporal
dynamics of state-level unemployment rate. As seen

from Figure 4, cold spots of unemployment first
increased and then decreased between 2003 and
2008, and the year 2008 marks a notable transition
of the unemployment landscape. The year 2008 can

Figure 3 Space–time hot and cold spots of Hurricane Sandy tweets.

Figure 4 Space–time hot and cold spots of unemployment rate.
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be viewed as a point of change, because it connected
two largely different unemployment landscapes (fea-
tured by cold spots in 2007 vs. hot spots in 2009).
This pattern can be linked with the 2008 financial
crisis, which caused a recession and increased unem-
ployment in the following years. Due to this eco-
nomic disaster, hot spots of unemployment emerged
in 2009, and the unemployment landscape continued
to be prominently featured until 2012. The year
2013 marks another transition of unemployment
landscapes where hot spots diminished and cold
spots were about to return. From 2014 to 2017, eco-
nomic recoveries reduced the unemployment rate,
and cold spots started to show in the unemploy-
ment landscape.

Concluding Remarks

We extended the local tests for spatial autocorrela-
tion in Getis and Ord (1992) to a space–time con-
text. The extensions to space–time Gi and G�

i were
accomplished by modifying Getis–Ord statistics to
incorporate the space–time adjacency structure orig-
inally developed by Griffith (1981). The modifica-
tion is straightforward and easy to implement. Two
applications show that our method can summarize
space–time patterns in panel-formatted geographic
observations and lend the results readily to visualiza-
tion. The visualization of space–time clusters in each
cross section gives new insights into the temporal
transitions of geographic phenomena; the method
can thus serve as an effective tool for identifying
the point of landscape change. As argued in the
Introduction, there is a lack of local tests of
space–time clustering in the literature; therefore,
our work can be a useful addition to the autocorrela-
tion-based ESTDA techniques.

There is an increasing awareness of the multiplic-
ity problem in local spatial autocorrelation measures.
People are realizing that multiple comparisons can
result in false spatial clusters and misleading conclu-
sions. In this context, GIS software programs such
as GeoDa and ESRI ArcMap have incorporated cor-
rections in their spatial statistical components to
address this issue. Multiplicity, however, has
received less attention in the local tests of space–
time autocorrelation than that of their spatial coun-
terparts. We used the FDR approach in this work to
reflect Type I error and identify as many true
space–time clusters as possible. Our work is an
improvement over existing measurements of local
spatiotemporal autocorrelation that overlooked mul-
tiple testing.

Simultaneous modeling of local space–time
effects can reveal many more details of spatial and
temporal processes in geographic phenomena,
although the modeling could be subjected to com-
putational obstacles because of the typically large

spatial–temporal data sets. Therefore, future efforts
could be made to improve the efficiency of algo-
rithms and leverage high-performance computing
power to accelerate the computation. Another scal-
ability problem arises when the data set comes with
a large number of time points (e.g., 10,000). In this
situation, mapping all of the results at every time
point will not be feasible. Future work could use
time series analysis (e.g., change point detection) to
summarize the temporal trends of hot and cold
spots. �
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